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ties of the dynamic wave field: (i) at resonance, there 
is a remarkable increase of the total primary beam 
current near the crystal st/rface; (ii) the penetration 
of the wave field below the corresponding beam emer- 
gence threshold is rather small. 
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Abstract Introduction 
An analysis is given of the dual transformation and 
also the strip method which can yield the ideal 
octagonal quasilattice as well as its approximants. An 
ideal octagonal tiling consisting of 45 ° rhombi and 
squares can be derived from the projection of a 4D 
cubic lattice within an irrational 2D subspace onto 
an irrational 2D hyperplane, and its Fourier trans- 
form matches well the eightfold electron diffraction 
pattern of the Cr-Ni-Si  octagonal quasicrystal. The 
approximant of an octagonal tiling corresponds to 
the rearrangement 6f two kinds of tiles in an ideal 
quasilattice which destroys the exact quasiperiodic 
sequence. It is shown that the defects introduced to 
change the aperiodic order into a regular approximant 
correspond to a linear phason strain along certain 
directions, and this will break the eightfold rotational 
symmetry. The Fourier transform agrees well with the 
experimental electron diffraction pattern displaying 
only fourfold symmetry. 

* Also at Beijing Laboratory of Electron Microscopy, Academia 
Sinica, PO Box 2724, 100080 Beijing, People's Republic of China. 

The discovery of a quasicrystal with icosahedral sym- 
metry in an AI-Mn alloy by Shechtman, Blech, 
Gratias & Cahn (1984) has initiated much activity in 
the experimental and theoretical studies of non-crys- 
tallographic symmetry of aperiodic crystals (Henley, 
1987; Kuo, 1988). Quite recently, the discovery of an 
octagonal quasicrystal in rapidly solidified Cr-Ni-Si  
and other alloys has been reported by Wang, Chen 
& Kuo (1987). The diffraction patterns of the new 
structure show a two-dimensional (2D) quasiperio- 
dicity with eightfold rotational symmetry and one- 
dimensional periodicity along the eightfold axis. This 
is rather similar to the 2D decagonal quasicrystal 
(Bendersky, 1985). The point group symmetry 
Dsh (8/mmm) is incompatible with any periodic lat- 
tice and therefore does not occur in crystals. The 
aperiodic lattice has recently been derived by many 
methods (Duneau & Katz, 1985; Elser, 1986; Kramer 
& Neri, 1984; Socolar & Steinhardt, 1986) which are 
based mainly on de Bruijn's (1981) work on Penrose 
tilings (Penrose, 1974). In addition, non-crystallo- 
graphic group theory including the octagonal case 
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has been developed (Janssen, 1986; Rokhsar, Wright 
& Mermin, 1988). Considerations of the octagonal 
tiling in different approaches have also been advanced 
(Beenker, 1982; Luck, 1988; Watanabe, Ito & Soma, 
1987). 

In real quasicrystals, however, defects exist abun- 
dantly as shown by diffuse diffraction spots. A con- 
cept which has proved useful in the description of 
the systematic disorder observed experimentally in 
aperiodic crystals is that of 'phason strain' (Bak, 
1985; Lubensky, Socolar, Steinhardt, Bancel & 
Heiney, 1986). The same phason strain can also be 
introduced in a regular or irregular way in the 
octagonal quasilattice to change it into an 
approximant. In most cases, the phason strain is a 
linear regular change which is manifested by the shift 
of some peaks away from the positions predicted for 
exact octagonal symmetry. 

The purpose of this paper is to discuss ideal and 
non-ideal octagonal lattices and their Fourier trans- 
forms so as to develop an understanding of the newly 
discovered octagonal quasicrystal and to interpret the 
experimentally observed electron diffraction patterns. 
In § 1 we present a basic overview of the 2D octagonal 
tiling. § 2 deals with the mathematical analysis of the 
approximant of the octagonal tiling and an example 
is given in § 3 to explain the distortions in experi- 
mental electron diffraction patterns of some octagonal 
phases. 

1. 2D octagonal  tiling 

Consider the four-dimensional (4D) hypercubic lat- 
tice in E 4. Its point symmetry group is the hyperoc- 
tagonal group /-2(4). The elements of/-2(4) are four 
permutations of the symmetry group S(4). For the 
octagonal case, we have a set of basis vectors which 
generate a 4D cubic lattice through the relation 

e = Q . I  (1.1) 

where I is a set of 4D Cartesian basis vectors, and 

0 
l/x/~ l / x / ~ - - l / x / 2  1/ 

Q=(1/x/2)  o 1 o ; (1.2) 

-1/4~ 1/4~ 1/~ 1/v~l 

r(x) =1 

basis vectors e is given by 

0 1 0 0 

0 0 1 0 

0 0 0 1 

-1  0 0 0 

r(v) = 

1 0 0 0 

0 0 0 -1  

0 0 -1  0 

0 1 0 0 

0 

0 

-1  0 0 

0 -1  0 
r(cr) = 

0 0 -1  0 

0 0 0 -1  

Apparently, a 4D space group can be constructed 
with a 4D translational subgroup based on the 
holohedral point group Dgh. This point group has 
subgroups (78, (78 x C2 and D8 that belong to the same 
4D Bravais lattice. For each of the corresponding 
matrix groups one may determine the possible 4D 
space group (Janssen, 1986). The corresponding 4D 
lattice is compatible with the 2D octagonal Bravais 
lattice. From (1.1), the selection of the first two or 
last two columns of Q determines a projection of the 
related vectors from E 4 to two 2D orthogonal spaces 
E~ and E~, respectively. In E~ and E~, the projected 
four basis vectors (see Fig. 1) become 

ell = Qyl- Ill; e ,  = Q± .  I± 

Q, = (l/v/2) 

o[ 
1/~  1 /~  

0 1 ; 

- 1 / ~  1/~ 
1 0 

- 1 / ~  1/~ 
0 -1 

l/v/2 l/x/2 

(1.4) 

and 

Q±=( l /x /2)  

It is proved that the reducible 4D representation 
of the group Dsh can be decomposed orthogonally 
into two nonequivalent irreducible 2D representa- 
tions in the two 2D spaces, E~l and E~ respectively. 
Also, this decomposition is an irrational reducible so 
that the corresponding projected structure is a 2D 

so we have a vector in E which can be written as 

4 

r = ~ n,ei. (1.3) 
i = l  

The set Z of all these vectors is invariant under an 
eightfold rotation X and a vertical mirror v. The two 
operations generate a group isomorphic with Da. If 
we add a central inversion o-, then it generates a group 
isomorphic with Dgh = Ds x C2 which is a subgroup 
of S(4). The action of these three elements on the 

Fig. 1. Projected basis vectors {e~} and {e~} in E~ and E2~, 
respectively. 
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quasiperiodic structure with eightfold symmetry. The 
3D structure is a layer structure which has a periodic- 
ity along the direction perpendicular to the aperiodic 
layers. 

As is well known, several authors have proposed 
some variations of the projection method to obtain 
a quasiperiodic lattice which could reproduce the 
experimentally observed diffraction patterns• These 
methods can be grouped into two classes: the direct 
projection (Duneau & Katz, 1985; Elser, 1986, 
Kalugin, Kitaev & Levitov, 1986) and the dual method 
(de Bruijn, 1981; Beenker, 1982; Socolar & 
Steinhardt, 1986). Dual methods are based on the 
projection of a higher-dimensional grid into a lower- 
dimensional space. Each region defined by the 
projected grid is then associated with a point (dual 
transformation) or a vertex of the unit-cell packing. 
In our case, we derive a 2D octagonal tiling by the 
regular dual grid transformation with Y~ y~ = 0 [see 
Fig. 2; y~ is a shift parameter along the ith direction 
(i = 1, 2, 3, 4)]. We can see that all properties of an 
octagonal quasilattice are shown here. Along a bond 
direction the ratio of the two types of length is x/2. 
Owing to similarity, there are plenty of local centres 
of eightfold symmetry which in turn are arranged 
with an eightfold symmetry. The basic unit cells are 
two kinds of tiles: square and 45 ° rhombus. Gaehler 
& Rhyner (1985) have proved that the tiling space 
and dual space in the dual transform are equivalent 
to the lower-dimensional hyperplane and subspace 
in the direct projection method. Thus, the vertices of 
the octagonal tiling can also be described in terms of 
the projection of a 4D lattice within an irrational 
subspace defined by Ql onto a 2D irrational hyper- 
plane defined by Q,, and we can determine the 

i / ' /q-L,  \ - q  /- 

7-', ; - - 1 \ / -  I \ ,  

/-." h /~ [ -~" , / ' .  _-j',./-71~ 

A / -A  ~ \  / ]  \ A-- 

• "T <.. a-ik/~/l\ ~1  ~ \ / I  

."1 m-~-/l\,--~,/I-~\ ~ ?r<~ 
I / - ; ' . "  '~\~ /~ .1-1 /~ .1  

\T \ , / / ~  i / ~ - \ I /  

\ / \  

Fig. 2. An ideal aperiodic octagonal tiling consists of squares and 
45 ° rhombi. 

projection operators PII and Pl  by using the relations 

Pile = ell; P i e = e l  (1.5) 

and 

PII = (1/2) 

el=(1~2) 

1 1/4~ o 
l/x/~ 1 1/~/2 

o 1/4~ 1 
-l/x~2 0 1/~/2 

l i -1/~ o -1 4~ 1 -1/~ 
- 1 / ~  1 

11/4~ o -1/~ 

-114~ 
0 

1/  v/-2 , 

1 

1/~ 
0 

1/~ 
1 

Obviously, P~ = PLI, PlIPi = 0 (0 is a matrix with zero 
elements). 

Following the same approach used in the case of 
crystals, the reciprocal basis e* of e can readily be 
constructed according to 

e~ . ej* = 6 o (1.6) 

where e* = Q*.  I, and then 

Q * = Q - ' = Q ,  (1.7) 

i.e. the basis e* of the set in the 4D reciprocal lattice 
Z* is the same as that of Z. However, it should be 
mentioned that, unlike crystals, the reciprocal basis 
e* now corresponds only to the rotational symmetry 
of the octagonal phase, and the corresponding 
quasiperiodicity in real space can be described by the 
self similarity of the structure. Now let us consider 
the calculation of the Fourier transform of an 
octagonal tiling in a simple case of identical atoms 
occupying all projected points in E 4. We define a 4D 
structure factor by 

F(g) = 2 f,  exp ( ig.  r) (1.8) 
t E Y  

with g ~ Z* and r ~ 2. Decomposing the 4D vectors 
g and r into components perpendicular and parallel 
to the 2D hyperplane, we obtain 

r= r l l+ r±  and g=gll + g i ,  (1.9) 

and then the structure factor of an octagonal structure 
obtained by the projection is 

F ( g , ) =  ~ f~,~exp(-ig±.r±) (1.10) 
r ~ _ C  

where C± is the projection of a 4D hypercubic cell 
C(a) onto E~ (see Fig. 3) which can be considered 
as the window function of E~ in the projection 
method. Suppose .f,~ = 1 and the number of atoms is 
infinite; then 

F ( g l l ) = l / p , ( C ± )  ~ e x p ( - i g ± . r i )  d2rl,  (1.11) 
C± 
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Table 1. List of peaks of the octagonal quasilattice 
having Imll] < 7  and Imil < 1.6 

The relative intensities are given in the table and the peaks can be 
indexed by four integers. The serial number corresponds to that 
of the spots in Fig. 4. 

Label m, m 2 m 3 m 4 I(mll) I m, I I m± I 
o o o o o 1-ooo o.ooo o-ooo 
1 1 0 0 0 0"418 1"000 1"000 
2 0 1 0 1 0"153 1"414 1"414 
3 1 1 0 0 0"607 1"848 0"765 
4 1 1 0 1 0"867 2"414 0"414 
5 1 1 1 1 0"356 2"613 1"082 
6 1 2 1 0 0"750 3"414 0"586 
7 1 2 1 1 0"301 3"558 1"159 
8 2 2 0 0 0"104 3"696 1"530 
9 1 2 2 0 0"647 4"182 0"717 

10 1 2 2 1 0"920 4"461 0"317 
11 2 2 2 0 0"556 4"828 0"828 
12 1 3 2 1 0"476 5"398 0"926 
13 2 3 2 0 0"976 5"828 0"172 
14 2 3 3 1 0"407 5"914 1"015 
15 1 3 3 1 0"846 6"309 0"449 
16 1 3 3 2 0"731 6"755 0"610 
17 2 4 2 0 0"293 6"828 1"172 

invariant subspaces. Then all possible peaks in the 
diffraction pattern have the indices (see Table 1) 

4 

ml = ~., M~rni (j = 1, 2, 3, 4). (1.14) 
j = l  

2. Approximants of octagonal tiling 

A n  o c t a g o n a l  t i l ing  cons i s t s  o f  t w o  u n i t  ce l l s ,  a n d  its 
ve r t i ces  c a n  b e  o b t a i n e d  e i t h e r  as d u a l s  to  t h e  m e s h e s  
o f  a r e g u l a r  t e t r a g r i d ,  o r  b y  p r o j e c t i n g  f r o m  a 4 D  
s i m p l e  c u b i c  l a t t i ce  w i t h i n  a n  i r r a t i o n a l  s t r ip  in  E 4. 

so that I(gll)=[F(gll)l 2. /z(C±) is the area of the 
corresponding projected cell which is an octagon, as 
shown in Fig. 3. Then Ix(Ca_ ) =  2(1 + x/2). The calcu- 
lated result is given in Table 1. We see that the 
calculated pattern matches fairly well the experi- 
mental one (see Fig. 4), particularly the positions of 
the spots. 

Like other quasicrystals, the diffraction pattern of 
an octagonal phase can be indexed by using its self 
similar transformation. As the inflation and deflation 
factors are respectively (Beenker, 1982) 

f=x / -2+ l  and f - - l = v ' 2 - 1  (1.12) 

the transformation can be given by a 4 x 4 matrix M, 

M = fPil - f - '  Pz = 11011 1 1 1 

0 1 1 

-1  0 1 

(1.13) 

The eigenvalue of M is x/2÷ 1 or x/2-1.  One can 
check that M commutes with the action of the 
octagonal group Dsh so that E~I and E~ are still 

Fig. 3. The projection ofa 4D unit cell onto E 2 which is an octagon 
divided into six subcubes. 

(a) 

o-e..e.~o~ o ~oobo..o% 
,ooO.o? o~ ~o oo.~. % oO oO Oo.Oo o 

.oo~ @ °oo° .@ .~,,°oo: • o o 0 .oo. o - o * (~" .00° o 

O. oO%.eo ~._~% .®. 00%.0° oO0ooO o o0 
o °oo?.d °~.~o~ ° ¢ °oo°.d °o.?oo o "o 

.O.oOOo .(3 0o% ¢. o¢o;oOo .0 00% O. ~OOo.O. 
%.O0o0"0"o00o 0°%.®,o0° 0 O0oO-0-%0o. 00 
o: o :oo,:O: o.:oo: o :oo:.O :o,,,:oo: o :o 
oO-o,,Oo.o, oOOo Oo oO-o.Oo p 0ooo.0.00,0.% 
b.°oo ° b %0 ° d b - ° ° d  b %0 ° .d °oo°.d 

q °0%.8o SS-oOOo o 00%-4 06-00% .6 
oo OooO. oo oo.Oooo -o. Oo oO.d Oo.OooO .o 
"oo; 0 ~oo~.q Do~oO, D'oOO~ 0 ~z~" 

0"9"o0oo 00%.O.oOO00o oO-ooO 
~-0" "O-.%o ° c~ %0 ° n" "n o 

o, oO*o°O0.(3 

(b) 

Fig. 4. (a) Eightfold electron diffraction pattern in a rapidly 
solidified Cr-Ni-Si alloy (Wang et al., 1987); (b) simulated 
diffraction pattern corresponding to Fig. 2. The spots with 
intensity I(gll ) > 0-01 are plotted (see also Table 1). 
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In fact, QIt determines the size and shape of unit cells 
presented in the aperiodic, structure and Q± the corre- 
sponding topology. If the strip is placed at a com- 
mensurate orientation, the corresponding structure is 
a crystal or an approximant of the octagonal tiling. 
It consists of the same unit cells but their arrangement 
does not follow the exact matching rules of an ideal 
octagonal tiling. In other words, it can still be 
described by the four basis vectors but its symmetry 
deviates from Dsh. The analogous geometry proper- 
ties have also been studied by many authors (Elser 
& Henley, 1985; Yang & Kuo, 1987). They found that 
the projection method can derive both quasiperiodic 
and periodic structures and the quasiperiodic struc- 
ture can be viewed as the limit of a sequence of 
periodic approximants. 

First, let us consider a 1D aperiodic sequence which 
consists of a series of long (L) and short (S) intervals 
with ratio v~ of L and S. The sequence has a similarity 
related to an inflation or deflation factor of ~ +  1 or 
x /2-1 ,  so that the sequence can be derived by a 
transformation (see Lu, Odagaki & Birman,  1986) 

and 

L' = U  (2.1) 

1 11 (2.2) 
U =  1 2 "  

The 1D sequence may be obtained in terms of the 
projection of a 2D cubic lattice onto a straight line 
of slope v~ in the 1D physical space, to give those 
lattice points whose projections on the axis perpen- 
dicular to this physical line fall within a specified 
window. The x/2 aperiodic sequence can be obtained 
by selecting an irrational strip which includes the 
lattice points whose projections fall on the irrational 
physical line. To obtain an approximant of the v/2 
series, one replaces the irrational strip by another 
one, such as a rational or a random one defined by 
a singled-value window function. We then get a series 
of 1D sequences of the same units that appeared in 
an aperiodic sequence but with different arrange- 
ments, either regular or random. 

The rational approximant of x/2 is a continued 
fraction expansion (Tt} ={1, 1, 2, 3, 5, 7, 12, 17, 29, 
41, . . .  }. It can easily be shown that the number of S 
is Tl_~ and that of L is Tt-2 in this x/2 series, and 
their ratio is given by Tt-1/Tt-2. This ratio is a rational 
number since both Tt-1 and Tt-2 are integers. The 
unit cell of the approximant has Tt intervals and its 
size increases with the order of l; these two numbers 
tend to infinity as the ratio Tt-2/Tt_~ becomes closer 
and closer to x/2, i.e. the direction of a strip tends to 
an irrational one. The larger the periodically repeating 
sequence, the better the approximation. The 1D 
sequence relating to v~ is as follows: 

lst: SL 
2nd" SLSSL 
3rd: SLSSLSLSLSSL 
4th: SLSSLSLSLSSLSLSSLSLSSLSLSLSSL.  

If we take the second-order rational approximant 
then we have a 1D sequence, 

SLSSLSLSSL SLSS__LL SLSSI. SLSSL 

compared with the aperiodic one, 

SLSSLSLSLSSLSLSSLSLSSLSLS.  

We find that there are defects introduced by the flip 
of two units at some places, for example, in the 
underlined positions. If the flip of these two units 
takes place randomly in a perfect sequence, then a 
random approximant can be obtained, for example 

SSLSSLSLSLS SSLSLSSLSLSLS SSLSLSLS SL. 

(a) 

| N s SS 
S 

i Y ~  I / 

,/I \ 
! 

(b) 

(c) 

Fig. 5. Possible error arrangements, (a), (b) and (c), in an ideal 
octagonal tiling. The dual grid and associated local tiling show 
the variation of topological transformation. Dashed lines denote 
the local configuration before the variation. 
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In this case, the strip window function is a random 
function with a single value. 

The above consideration can easily be extended to 
a 2D octagonal tiling such that a flip is replaced by 
a local exchange in the arrangement of unit cells. The 
three basic errors which appear in an ideal octagonal 
tiling are given in Figs. 5(a), (b) and (c). From the 
variation of dual grid and the associated local tiling, 
we see that the deviation of Q.  results only in topo- 
logical changes between adjacent tiles in a perfect 
structure. The 2D coordinate of each point in the 
plane, rll , can be supplemented by another 2D coor- 
dinate, r±, such that the combination rll + r± is a lattice 
point in 4D space. The orthogonal supplement may 
be thought of as an order parameter of the structure 
which can be expressed by four integers as nla~ + . . .  + 
naa4. The line defect can be applied to this definition 
by introducing a linear variation along some direc- 
tion, i.e. r: = r± + Ar~ and Ar±(rll ) oc rll. By the same 
reasoning, a random defect corresponds to a random 

(a) 

I I 
/ 1 / 

I I 
/ 

(b) 

Fig. 6. (a) A random approximant. There are many local configur- 
ations disallowed in an ideal octagonal tiling which destroy the 
exact x/2 quasiperiodic sequence of the structure. (b) A periodic 
approximant of an octagonal tiling which can be constructed 
approximately by a large unit cell defined by the dashed square. 

fluctuation Ar.(rli) with a zero statistical average. In 
this paper, we show two typical approximants: one 
random (Fig. 6a) and the other regular (Fig. 6b). The 
defects introduced here have a broken continuous 
symmetry not present in a regular periodic structure. 
In a sufficiently large region, random defects existing 
in a random approximant lead to peak broadening 
in the diffraction pattern and linear ones existing in 
a regular approximant lead mainly to peak shifts. The 
latter phenomenon has been found in experiments 
and we will give a brief consideration in § 3. 

Socolar, Lubensky & Steinhardt (1986) have shown 
that local-exchange errors of unit cells in a quasilat- 
tice can be associated with variation in phase in the 
density-wave description of the quasicrystal. Such 
rearrangements leading to phase shifts have been 
called phasons in incommensurate systems (Bak, 
1982). 

3. An example of a 3/2 approximant 

In general, the approximant of an octagonal tiling 
consists of almost periodically repeated 'aperiodic' 
blocks. For a simple case, the apj?roximant is obtained 
by the dual transform when x/2 in Q.  [see (1.4)] is 
approximated by 3/2. Note that their mismatches are 
considered as linear phason strains. Also, in this case 
one can show that the set of maxima in the diffraction 
pattern coincides with the projection of the 4D 
reciprocal lattice. According to (1.5), if 

Q =  (1/v~) 

1 0 1 

l/v/2 1 / x / 2 - 2 / 3  

0 1 0 

l / v ~  l/x/2 2/3 

then 

Q* = [ ~ /  ( l +v/8/3)]  

0 

2/3 
(3.1) 

-1  

2/3 

x/-8/3 0 1 O I 

1/42 1/V'2-1/42 11 ,'71 o 4 - ~ / 3  0 - " 

-l/x/2 1/v/2 1/~,,/2 1/4~1 
(3.2) 

From § 1 we know that Q determines the order in 
a real structure and the relative intensity in the corre- 
sl)onding Fourier spectrum. Thus, (3.1) and (3.2) 
show that with the linear variation of topological 
order (related to Ql ) in real space there will be peak 
shifts (related to QII <) in the reciprocal space along 
certain directions. In our example, along the two 
directions at 45 and 135 ° the ratio of the basis vector 
lengths is about v/8/3. Furthermore, both the real 
structure and its Fourier transform derived by the 
projection method show that there is a departure from 
or breaking of the eightfold symmetry. For this 
approximant, the structure consists approximately of 
quite large unit cells (one of them is outlined by 
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dashed  l ines in Fig. 6b) ,  and  the an i so t ropy  in 
rec iproca l  space  appa ren t l y  appears  in the two direc- 
t ions  at 45 and  135 ° d e n o t e d  by arrows in Fig. 7(b) .  
The l ine defects  i n t r o d u c e d  in the s t ructure  lead  to 
the co r r e spond ing  peak  shifts in the Four ie r  t rans-  
form. The  weak  spots close to the centre  in these 
d i rec t ions  t end  a p p r o x i m a t e l y  to a per iod ic  dis t r ibu-  

\ 
• / 

m 
• Q 

• ' • • 4 

@ . . . .  O • • D 
. 

. Q 

t ion d i sp lay ing  a p s e u d o - f o u r f o l d  symmet ry  (marked  
by a r rowheads  in Fig. 7b).  As m e n t i o n e d  before  
(Lubensky ,  Socolar ,  S te inhard t ,  Bancel  & Heiney ,  
1986), the lower  the in tensi ty ,  the greater  the peak  
shift;  this means  the shif t  is p r o p o r t i o n a l  to Igll for  
l inear  phasons .  Such a peak  shift  has in fact  been  
observed  in the e lec t ron  di f f ract ion pa t t e rn  (Fig. 7a )  
o f  a new oc t agona l  quas icrys ta l  in an  M n - F e - S i  a l loy 
(Zhou ,  1987). This  impl ies  tha t  this quas icrys ta l  
was g rown u n d e r  an i so t rop ic  stresses dur ing  rap id  
sol idif icat ion.  Wang  & Kuo  (1987) have shown  tha t  
on  hea t ing  to 670 K this p seudo - fou r fo ld  symmet ry  
g radua l ly  c h a n g e d  to an  e ight fo ld  one,  imp ly ing  stress 
re laxa t ion  and  a g radua l  d i s appea rance  o f  defects.  

The  au thors  t h a n k  Messrs N. Wang  and  D. S. Z h o u  
for p rov id ing  Figs. 4 ( a )  and  7 (a ) ,  respect ively.  
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Fig. 7. (a) Electron diffraction pattern of a rapidly solidified Mn- 
Fe-Si alloy with a broken eightfold symmetry. The weak spots 
along the 45 and 135 ° directions are more or less periodic, as 
shown by the arrow heads (Zhou, 1987). (b) The Fourier trans- 
form of the structure shown in Fig. 6(b). Along the directions 
indicated by arrows the weak spots close to the centre tend to 
distribute periodically with a pseudo-fourfold symmetry. 
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